Methane-Derived Carbon in the Benthic Food Web in Stream Impoundments |
| |
Authors: | John Gichimu Mbaka Celia Somlai Denis K?pfer Andreas Maeck Andreas Lorke Ralf B. Sch?fer |
| |
Affiliation: | Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate State, Germany.; Scottish Association for Marine Science, United Kingdom, |
| |
Abstract: | Methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs. CH4 is oxidized by methane oxidizing bacteria (MOB), and subsequently utilized by chironomid larvae, which may exhibit low δ13C values. This has been shown for chironomid larvae collected from lakes, streams and backwater pools. However, the relationship between CH4 concentrations and δ13C values of chironomid larvae for in-stream impoundments is unknown. CH4 concentrations were measured in eleven in-stream impoundments located in the Queich River catchment area, South-western Germany. Furthermore, the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae) were determined and correlated with CH4 concentrations. Chironomini larvae had lower mean δ13C values (−29.2 to −25.5 ‰), than Tanypodinae larvae (−26.9 to −25.3 ‰). No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p>0.05). Mean δ13C values of chironomid larvae (mean: −26.8‰, range: −29.2‰ to −25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: −28.4‰, range: −29.3‰ to −27.1‰) and tree leaf litter (mean: −29.8 ‰, range: −30.5‰ to −29.1‰). We suggest that CH4 concentration has limited influence on the benthic food web in stream impoundments. |
| |
Keywords: | |
|
|