首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment
Authors:Kristin A Gabor  Michelle F Goody  Walter K Mowel  Meghan E Breitbach  Remi L Gratacap  P Eckhard Witten  Carol H Kim
Institution:1.Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.;2.Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.;3.Department of Biology, Ledeganckstraat 35, B-9000 Ghent, Belgium.
Abstract:Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.KEY WORDS: Influenza, Zebrafish, Virus, Innate immunity
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号