首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural characterization of heparan sulfate and chondroitin sulfate of syndecan-1 purified from normal murine mammary gland epithelial cells. Common phosphorylation of xylose and differential sulfation of galactose in the protein linkage region tetrasaccharide sequence
Authors:Ueno M  Yamada S  Zako M  Bernfield M  Sugahara K
Institution:Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
Abstract:Syndecan-1, present on the surfaces of normal murine mammary gland epithelial cells, is a transmembrane hybrid proteoglycan, which bears glycosaminoglycan (GAG) side chains of heparan sulfate (HS) and chondroitin sulfate (CS). Purified syndecan-1 ectodomains were analyzed for disaccharide composition and the GAG-protein linkage region after digestion with bacterial lyases. The HS chains contained predominantly a nonsulfated unit with smaller proportions of two monosulfated, two disulfated, and a trisulfated unit, whereas CS chains were demonstrated for the first time to bear GlcUA-GalNAc(4-O-sulfate) as a major component as well as GlcUA-GalNAc, GlcUA-GalNAc(6-O-sulfate), and an E disaccharide unit GlcUA-GalNAc(4,6-O-disulfate) as minor yet appreciable components. Two kinds of linkage region tetrasaccharides, GlcUA-Gal-Gal-Xyl and GlcUA-Gal-Gal-Xyl(2-O-phosphate), were found for the HS chains in a molar ratio of 55:45. In marked contrast, an additional sulfated tetrasaccharide, GlcUA-Gal(4-O-sulfate)-Gal-Xyl, was demonstrated only for the CS chains, and the unmodified phosphorylated and sulfated components were present at a molar ratio of 55:26:19. The present study thus provided conclusive evidence for the hypothesis that 4-O-sulfation of Gal is peculiar to CS chains in contrast to the phosphorylation of Xyl, which is common to both HS and CS chains. These modifications may be required for biosynthetic maturation of the linkage region tetrasaccharide sequence, which is a prerequisite for creating the repeating disaccharide region of GAG chains and/or biosynthetic selective chain assembly of CS and HS chains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号