首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorylation of Eukaryotic Translation Initiation Factor 4E and Eukaryotic Translation Initiation Factor 4E-binding Protein (4EBP) and Their Upstream Signaling Components Undergo Diurnal Oscillation in the Mouse Hippocampus: IMPLICATIONS FOR MEMORY PERSISTENCE*
Authors:Amit Saraf  Jie Luo  David R Morris  Daniel R Storm
Institution:From the Departments of Pharmacology and ;§Biochemistry, University of Washington, Seattle, Washington 98195
Abstract:Translation of mRNA plays a critical role in consolidation of long-term memory. Here, we report that markers of initiation of mRNA translation are activated during training for contextual memory and that they undergo diurnal oscillation in the mouse hippocampus with maximal activity observed during the daytime (zeitgeber time 4–8 h). Phosphorylation and activation of eukaryotic translation initiation factor 4E (eIF4E), eIF4E-binding protein 1 (4EBP1), ribosomal protein S6, and eIF4F cap-complex formation, all of which are markers for translation initiation, were higher in the hippocampus during the daytime compared with night. The circadian oscillation in markers of mRNA translation was lost in memory-deficient transgenic mice lacking calmodulin-stimulated adenylyl cyclases. Moreover, disruption of the circadian rhythm blocked diurnal oscillations in eIF4E, 4EBP1, rpS6, Akt, and ERK1/2 phosphorylation and impaired memory consolidation. Furthermore, repeated inhibition of translation in the hippocampus 48 h after contextual training with the protein synthesis inhibitor anisomycin impaired memory persistence. We conclude that repeated activation of markers of translation initiation in hippocampus during the circadian cycle might be critical for memory persistence.
Keywords:Circadian Rhythm  Eukaryotic Translation Initiation Factor 4E (eIF4E)  Neurobiology  Signal Transduction  Translation  Contextual Fear Conditioning  Long Term Memory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号