首页 | 本学科首页   官方微博 | 高级检索  
   检索      


End Resection at Double-Strand Breaks: Mechanism and Regulation
Authors:Lorraine S Symington
Institution:Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032
Abstract:RecA/Rad51 catalyzed pairing of homologous DNA strands, initiated by polymerization of the recombinase on single-stranded DNA (ssDNA), is a universal feature of homologous recombination (HR). Generation of ssDNA from a double-strand break (DSB) requires nucleolytic degradation of the 5′-terminated strands to generate 3′-ssDNA tails, a process referred to as 5′–3′ end resection. The RecBCD helicase–nuclease complex is the main end-processing machine in Gram-negative bacteria. Mre11-Rad50 and Mre11-Rad50-Xrs2/Nbs1 can play a direct role in end resection in archaea and eukaryota, respectively, by removing end-blocking lesions and act indirectly by recruiting the helicases and nucleases responsible for extensive resection. In eukaryotic cells, the initiation of end resection has emerged as a critical regulatory step to differentiate between homology-dependent and end-joining repair of DSBs.DSBs can arise accidentally during normal cell metabolism or after exposure of cells to DNA-damaging agents, and also serve as intermediates in a number of programmed recombination events in eukaryotic cells (Mehta and Haber 2014). The repair of DSBs is critical for maintenance of genome integrity, and misrepair, or failure to repair, is associated with chromosome rearrangements, chromosome loss, or even cell death. Both prokaryotic and eukaryotic cells have evolved elaborate mechanisms for the recognition and repair of DSBs. The two predominant repair mechanisms are HR and non-homologous end joining (NHEJ). HR relies on the presence of an intact homologous duplex to template repair of the broken strands, whereas NHEJ repairs DSBs by direct ligation of the DNA ends. For DSBs to be repaired by HR, the ends must first be degraded to generate long 3′-ssDNA tails, a process referred to as 5′–3′ end resection. The 3′-ssDNA tails are then bound by a member of the RecA/Rad51 family of proteins to initiate homologous pairing and serve as primers for DNA synthesis following strand invasion. Strand invasion intermediates are further processed by helicases and/or nucleases (Bizard and Hickson 2014; Wyatt and West 2014), and ultimately by gap-filling DNA synthesis and ligation, to generate mature recombinant products. The DNA end-resection step of HR is conserved in all domains of life, but the mechanisms used for generating ssDNA are distinct. Here, we review the basic machinery for DNA end resection in bacteria, archaea, and eukaryota and the regulation of end resection in eukaryotic cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号