首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Efficient decomposition of shrimp shell waste using <Emphasis Type="Italic">Bacillus cereus</Emphasis> and <Emphasis Type="Italic">Exiguobacterium acetylicum</Emphasis>
Authors:Iryna Sorokulova  April Krumnow  Ludmila Globa  Vitaly Vodyanoy
Institution:(1) Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
Abstract:Two bacterial cultures were isolated and tested for degradation of shrimp shell waste. According to morphological examination, physiological tests, and applied molecular techniques, isolates were identified as Bacillus cereus and Exiguobacterium acetylicum. Both strains were cultivated separately in flasks with 100 mL of shrimp shell waste broth (3% of washed, dried and ground shrimp shell waste in tap water, pH 7.0) at 37°C. At determined periods of time, deproteinization and demineralization of residuals were measured. Fermentation of 3% shell waste with B. cereus indicated 97.1% deproteinization and 95% demineralization. For E. acetylicum, the level of deproteinization and demineralization was 92.8 and 92%, respectively. Protein content was reduced from 18.7 to 5.3% with B. cereus and to 7.3% with E. acetylicum. No additional supplements were used during the fermentation of shell waste. B. cereus strain showed higher efficacy in decomposition of shell waste and was used for large-scale fermentation in 12 L of 10% shrimp shell waste broth. Incubation of bacteria with shell waste during 14 days at 37°C resulted in 78.6% deproteinization and 73% demineralization. High activity of isolated cultures in decomposition of shrimp shell waste suggests broad potential for application of these bacteria in environmentally friendly approaches to chitin extraction from chitin-rich wastes.
Keywords:Shrimp shell waste  Bacterial decomposition            Bacillus cereus                      Exiguobacterium acetylicum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号