首页 | 本学科首页   官方微博 | 高级检索  
     


Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis.
Authors:D A Berkich  G D Williams  P T Masiakos  M B Smith  P D Boyer  K F LaNoue
Affiliation:Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033.
Abstract:The forward and reverse rates of the overall reaction catalyzed by the ATP synthase in intact rat heart mitochondria, as measured with 32P, were compared with the rates of two partial steps, as measured with 18O. Such rates have been measured previously, but their relationship to one another has not been determined, nor have the partial reactions been measured in intact mitochondria. The partial steps measured were the rate of medium Pi formation from bound ATP (in state 4 this also equals the rate of medium Pi into bound ATP) and the rate of formation of bound ATP from bound Pi within the catalytic site. The rates of both partial reactions can be measured by 31P NMR analysis of the 18O distribution in Pi and ATP released from the enzyme during incubation of intact mitochondria with highly labeled [18O]Pi. Data were obtained in state 3 and 4 conditions with variation in substrate concentrations, temperature, and mitochondrial membrane electrical potential gradient (delta psi m). Although neither binding nor release of ATP is necessary for phosphate/H2O exchange, in state 4 the rate of incorporation of at least one water oxygen atom into phosphate is approximately twice the rate of the overall reaction rate under a variety of conditions. This can be explained if the release of Pi or ATP at one catalytic site does not occur, unless ATP or Pi is bound at another catalytic site. Such coupling provides strong support for the previously proposed alternating site mechanism. In state 3 slow reversal of ATP synthesis occurs within the mitochondrial matrix and can be detected as incorporation of water oxygen atoms into medium Pi even though medium [32P]ATP does not give rise to 32Pi in state 3. These data can be explained by lack of translocation of ATP from the medium to the mitochondrial matrix. The rate of bound ATP formation from bound Pi at catalytic sites was over twice the rate of the overall reaction in both states 4 and 3. The rate of reaction at the catalytic site is considerably less sensitive to the decrease in membrane potential and the concentration of medium ADP than is the rate of medium ATP formation. This supports the view that the active catalytic site is occluded and proceeds at a rapid rate which is relatively independent of delta psi m and of media substrates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号