首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cloning, Disruption and Chromosomal Mapping of Yeast LEU3 , a Putative Regulatory Gene
Authors:Paula R G Brisco  Thomas S Cunningham  and Gunter B Kohlhaw
Institution:Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
Abstract:The LEU3 gene of the yeast Saccharomyces cerevisiae, which is involved in the regulation of at least two LEU structural genes (LEU1 and LEU2), has been cloned by complementation of leu3 mutations and shown to reside within a 5.6-kb fragment. Transformation of leu3 mutants with LEU3-carrying multicopy plasmids restored normal, leucine-independent growth behavior in the recipients. It also restored approximately wild-type levels of isopropylmalate isomerase (LEU1) and beta-isopropylmalate dehydrogenase (LEU2), which were strongly reduced when exogenous leucine was supplied. Strains containing a disrupted leu3 allele were constructed by deleting 0.7-kb of LEU3 DNA and inserting the yeast HIS3 gene in its place. Like other leu3 mutants, these strains were leaky leucine auxotrophs, owing to a basal level of expression of LEU1 and LEU2. Southern transfer and genetic analyses of strains carrying a disrupted leu3 allele demonstrated that the cloned gene was LEU3, as opposed to a suppressor. Disruption of LEU3 was performed also with a diploid and shown to be nonlethal by tetrad analysis. Northern transfer experiments showed that the LEU3 gene produces mRNA approximately 2.9 kilonucleotides in length. The leu3 marker was mapped to chromosome XII by the spo11 method. Linkage to ura4 by about 44 centiMorgans places leu3 on the right arm of this chromosome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号