首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ecomethodology for organoosmotrophs: Prokaryotic unicellular versus eukaryotic mycelial
Authors:S Y Newell
Institution:(1) Marine Institute, University of Georgia, 31327 Sapelo Island, Georgia, USA
Abstract:Although they are very unlikely to play large direct roles in water-column microbial loops, eukaryotic mycelial decomposers (the mycelial true fungi, eumycotes, and zoosporic ldquofungi,rdquo oomycotes) have the potential to be important secondary producers in decaying plant material in shallow aquatic systems. Their secondary productivity may lead to important exchanges of material with microbial loops: output of ascospores, conidia, zoosporic flagellates, leaked lysates, and particles of decayed plants containing mycelium; input of dissolved organics and inorganic nutrients. Development of methods for ecological study of the aquatic mycelial eukaryotic decomposers has not advanced as rapidly as that for the prokaryotes of microbial loops, probably because (1) there are fewer aquatic microbial ecologists with mycological training and inclination than with prokaryotic leanings; and (2) the mycelial decomposers are difficult to work with, because they produce their mycelial mass virtually entirely within opaque solid substrates. Direct microscopic methods have emerged as prime tools for the measurement of prokaryotic mass, whereas an index-chemical assay (ergosterol) is currently the most efficient way to measure the mass of eumycotes. For measuring productivity of prokaryotes of microbial loops, microbial ecologists may choose from several (>10) published and field-tested methods, involving direct microscopy or monitoring of radiotracers. Extensive reviews of distribution and dynamics of aquatic bacterial mass and productivity have appeared. For measuring productivity of eukaryotic mycelial decomposers, one has only two published methods from which to choose, a direct-microscopic and a radiotracer method, neither of which has had adequate field testing. We are, furthermore, much less well equipped to obtain mass and productivity information for the poorly known mycelial oomycotes than we are for the eumycotes. Application of productivity techniques and nucleic-acid technology, may within the next decade allow knowledge of ecology of aquatic eukaryotic mycelial decomposers to advance to levels approaching that for the prokaryotes of microbial loops.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号