首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate
Authors:Melissa Lacey  Agnieshka Agasing  Rebecca Lowry  Jeffrey Green
Institution:Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK
Abstract:Complex 3′-5′-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, 213Lys-Lys-Glu215, in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown.
Keywords:chemotaxis  cyclic-di-GMP  MASE1 domain  oxidative stress  Salmonella
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号