首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Farnesyl Phosphatase,a Corpora allata Enzyme Involved in Juvenile Hormone Biosynthesis in Aedes aegypti
Authors:Pratik Nyati  Marcela Nouzova  Crisalejandra Rivera-Perez  Mark E Clifton  Jaime G Mayoral  Fernando G Noriega
Institution:Department of Biological Sciences, Florida International University, Miami, Florida, United States of America.; Centro de Pesquisas René Rachou, Brazil,
Abstract:

Background

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. The late steps of JH III biosynthesis in the mosquito Aedes aegypti involve the hydrolysis of farnesyl pyrophosphate (FPP) to farnesol (FOL), which is then successively oxidized to farnesal and farnesoic acid, methylated to form methyl farnesoate and finally transformed to JH III by a P450 epoxidase. The only recognized FPP phosphatase (FPPase) expressed in the corpora allata (CA) of an insect was recently described in Drosophila melanogaster (DmFPPase). In the present study we sought to molecularly and biochemically characterize the FPP phosphatase responsible for the transformation of FPP into FOL in the CA of A. aegypti.

Methods

A search for orthologs of the DmFPPase in Aedes aegypti led to the identification of 3 putative FPPase paralogs expressed in the CA of the mosquito (AaFPPases-1, -2, and -3). The activities of recombinant AaFPPases were tested against general phosphatase substrates and isoprenoid pyrophosphates. Using a newly developed assay utilizing fluorescent tags, we analyzed AaFPPase activities in CA of sugar and blood-fed females. Double-stranded RNA (dsRNA) was used to evaluate the effect of reduction of AaFPPase mRNAs on JH biosynthesis.

Conclusions

AaFPPase-1 and AaFPPase-2 are members of the NagD family of the Class IIA C2 cap-containing haloalkanoic acid dehalogenase (HAD) super family and efficiently hydrolyzed FPP into FOL. AaFPPase activities were different in CA of sugar and blood-fed females. Injection of dsRNAs resulted in a significant reduction of AaFPPase-1 and AaFPPase-2 mRNAs, but only reduction of AaFPPase-1 caused a significant decrease of JH biosynthesis. These results suggest that AaFPPase-1 is predominantly involved in the catalysis of FPP into FOL in the CA of A. aegypti.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号