首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore
Authors:Yuhui He  Makusu Tsutsui  Ralph?H Scheicher  Chun Fan  Masateru Taniguchi  Tomoji Kawai
Institution:The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan;Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;§Computer Center of Peking University, Peking University, Beijing, China
Abstract:Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号