首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of hydrolysis to tetraols and binding of benzo(a)pyrene-7,8-dihydrodiol-9,10-oxide and its tetraol derivatives to DNA. Conformation of adducts
Authors:Nicholas E Geacintov  Victor Ibanez  Antoine G Gagliano  Hiroko Yoshida  Ronald G Harvey
Institution:1. Chemistry Department, New York University, New York, N.Y. 10003, USA;2. Radiation and Solid State Laboratory, New York University, New York, N.Y. 10003, USA;3. Universite Paris XI, Institut Universitaire de Technologie, Cachan, France;4. Ben May Laboratory for Cancer Research, University of Chicago, Chicago, Illinois 60637 USA
Abstract:When the major reactive metabolite of benzo(a)pyrene, trans -7,8-dihydroxy - anti-9,10-epoxy -7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BPDE) is incubated with DNA in aqueous solution at 25°C, both covalent binding and hydrolysis of anti-BPDE to its tetraols occur. Using fluorescence and absorption spectroscopy it is shown that hydrolysis of anti-BPDE is markedly accelerated by DNA. In the presence of 5A260 units of DNA per ml in cacodylate buffer solution, at an initial concentration of DNA phosphate/anti-BPDE ratio of 100, both the extent of covalent binding to DNA ( < 7% of the total anti-BPDE initially present) and hydrolysis of anti-BPDE reach their maximum levels within less than five minutes after mixing. Absorption and electric linear dichroism spectra indicate that the tetraols bind non-covalently to DNA by an intercalation mechanism, whereas the covalent product displays the characteristics of an externally bound complex.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号