首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A role for zinc in regulating hypoxia-induced contractile events in pulmonary endothelium
Authors:Bernal Paula J  Bauer Eileen M  Cao Rong  Maniar Salony  Mosher Mackenzie  Chen Jun  Wang Qiming Jane  Glorioso Joseph C  Pitt Bruce R  Watkins Simon C  St Croix Claudette M
Institution:Department of Cell Biology, The University of Pittsburgh, Pennsylvania 15219, USA.
Abstract:We previously reported that zinc thiolate signaling contributes to hypoxic contraction of small, nonmuscularized arteries of the lung. The present studies were designed to investigate mechanisms by which hypoxia-released zinc induces contraction in isolated pulmonary endothelial cells and to delineate the signaling pathways involved in zinc-mediated changes in the actin cytoskeleton. We used fluorescence-based imaging to show that hypoxia induced time-dependent increases in actin stress fibers that were reversed by the zinc chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). We further showed that hypoxia-induced phosphorylation of the contractile protein myosin light chain (MLC) and assembly of actin stress fibers were each TPEN sensitive. Hypoxia and zinc-induced inhibition of MLC phosphatase (MLCP) were independent of the regulatory subunit (MYPT1) of MLCP, and therefore hypoxia-released zinc likely inhibits MLCP at its catalytic (PP1) subunit. Inhibition of PKC by Ro-31-8220 and a dominant-negative construct of PKC-ε attenuated hypoxia-induced contraction of isolated pulmonary endothelial cells. Furthermore, zinc-induced phosphorylation of MLC (secondary to inhibition of MLCP) was PKC dependent, and hypoxia-released zinc promoted the phosphorylation of the PKC substrate, CPI-17. Collectively, these data suggest a link between hypoxia, elevations in labile zinc, and activation of PKC, which in turn acts through CPI-17 to inhibit MLCP activity and promote MLC phosphorylation, ultimately inducing stress fiber formation and endothelial cell contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号