首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The transmembrane domains of the sensor kinase KdpD of Escherichia coli are not essential for sensing K+ limitation
Authors:Heermann Ralf  Fohrmann Andy  Altendorf Karlheinz  Jung Kirsten
Institution:Universit?t Osnabrück, Fachbereich/Chemie, Abteilung Mikrobiologie, Osnabrück, Germany.
Abstract:The sensor kinase/response regulator system KdpD/KdpE of Escherichia coli regulates the expression of the kdpFABC operon, which encodes the high affinity K+ transport system KdpFABC. The membrane-bound sensor kinase KdpD consists of four transmembrane domains, a large cytoplasmic N-terminal domain and a cytoplasmic C-terminal transmitter domain. To elucidate the role of the four transmembrane domains, various deletions were introduced in kdpD and the activities of the resulting truncated derivatives of KdpD were determined. A KdpD protein lacking all four transmembrane domains was able to sense low K+ concentrations, whereas at higher K+ concentrations kdpFABC expression was constitutive. These and further results with various truncated KdpD proteins lacking distinct parts of the transmembrane domains or derivatives in which a linker peptide or two transmembrane domains of PutP, the Na+/proline transporter of Escherichia coli, replaced the missing part indicated that the transmembrane domains are not essential for sensing of K+ limitation, but may be important for the correct positioning of the large N- and C-terminal cytoplasmic domains to each other.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号