首页 | 本学科首页   官方微博 | 高级检索  
     


Antioxidant supplementation enhances the exercise-induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle
Authors:Hellsten Ylva  Nielsen Jens J  Lykkesfeldt Jens  Bruhn Maria  Silveira Leonardo  Pilegaard Henriette  Bangsbo Jens
Affiliation:Department of Exercise and Sport Science, Copenhagen Muscle Research Center, University of Copenhagen, DK-2100 Copenhagen, Denmark. yhellsten@aki.ku.dk
Abstract:The effects of acute exercise on the mRNA content of selected genes were examined during control conditions and after oral intake of antioxidants. In addition, to provide evidence for formation of reactive oxygen species (ROS) in human skeletal muscle during exercise, cytochrome c reduction was measured in microdialysate from the muscle. For the study on the effects of antioxidants on mRNA content, seven healthy, habitually active, male subjects participated in a double-blinded experimental design in which they, on one occasion, received a placebo and, on another, a mixture of antioxidants containing 1500 mg vitamin C, 120 mg coenzyme Q, and 345 mg alpha-tocopherol every day for 7 days before the experiment. On the experimental day the subjects cycled for 90 min and muscle biopsies were taken preexercise and at 1, 3, and 5 h after exercise. Exercise induced an increase in the eNOS, UCP3, PGC-1alpha, VEGF, Hsp72, and HO-1 mRNA content (p < 0.001), whereas there was no change in the Hsc70 mRNA level. Prior antioxidant treatment further enhanced (p < 0.05) the eNOS and UCP3 mRNA content after exercise. Moreover, the overall level of Hsc70 mRNA tended (p = 0.07) to be higher after antioxidant treatment. In another group of healthy male subjects, cytochrome c reduction was determined in microdialysate from the thigh muscle at rest and during knee extensor exercise to determine ROS formation. There was a significant increase in cytochrome c reduction with exercise both at 14 ( approximately 25%) and at 30 W ( approximately 50%). The data show that ROS are formed within skeletal muscle during exercise and that oral intake of antioxidants can enhance the exercise-induced adaptive mRNA responses of eNOS and UCP3.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号