首页 | 本学科首页   官方微博 | 高级检索  
     


MosA, a protein implicated in rhizopine biosynthesis in Sinorhizobium meliloti L5-30, is a dihydrodipicolinate synthase
Authors:Tam Pui Hang  Phenix Christopher P  Palmer David R J
Affiliation:Department of Biochemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Sask., Canada S7N 5C9.
Abstract:MosA is a gene product encoded on a pSym megaplasmid of Sinorhizobium meliloti L5-30. The gene is part of an operon reported to be essential for the synthesis of the rhizopine 3-O-methyl-scyllo-inosamine. MosA has been assigned the function of an O-methyltransferase. However, the reported sequence of this protein is very much like that of dihydrodipicolinate synthase (DHDPS), except for a 40 amino acid residue C-terminal domain. This similarity contradicts accepted ideas regarding structure-function relationships of enzymes. We have cloned and overexpressed the recombinant gene in Escherichia coli, and discovered that the reported sequence contains an error resulting in a frame-shift. The correct sequence contains a new stop codon, truncating the C-terminal 41 amino acid residues of the reported sequence. The expressed protein, bearing an N-terminal polyhistidine tag, catalyzes the condensation of pyruvate and aspartate beta-semialdehyde efficiently, suggesting that this activity is not a side-reaction, but an activity for which this enzyme has evolved. Electro-spray mass spectrometry experiments and inhibition by L-lysine are consistent with the enzyme being a DHDPS. E.coli AT997, a mutant host normally requiring exogenous diaminopimelate for growth, could be complemented by transformation with a plasmid bearing the gene encoding MosA. A role for this enzyme in rhizopine synthesis cannot be ruled out, but is called into question.
Keywords:MosA   rhizopine   Sinorhizobium meliloti L5-30   dihidrodipicolinate synthase   aldolase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号