首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species
Authors:Sperry J S  Sullivan J E
Institution:Department of Biology, University of Utah, Salt Lake City, Utah 84112.
Abstract:Vulnerability to xylem embolism by freeze-thaw cycles and water stress was quantified in ring-porous (Quercus gambelii Nutt.), diffuse-porous (Populus tremuloides Michx., Betula occidentalis Hook.), and conifer species (Abies lasiocarpa Nutt., Juniperus scopulorum Sarg.). Embolism was measured by its reduction of xylem hydraulic conductivity; it was induced by xylem tension (water-stress response) and by a tension plus a freeze-thaw cycle (freeze response). Conifers showed little (Juniperus) or no (Abies) freeze response even to repeated cycles. In contrast, Quercus embolized more than 90% by freezing at tensions below 0.2 MPa, whereas similar embolism without freezing required tensions above 4.5 MPa. Diffuse-porous trees (Betula, Populus) showed an intermediate freeze response. The magnitude of the freeze response was correlated with conduit volume but occurred at higher tensions than predicted from theory. Large early-wood vessels (2.8 × 10−9 m3) in oak were most vulnerable to embolism by freezing, small vessels in Populus and Betula were intermediate (approximately 7 × 10−11 m3), and tracheids in conifers (about 3 × 10−13 m3) were most resistant. The same trend was found within a stem: embolism by freeze-thawing occurred preferentially in wider conduits. The water-stress response was not correlated with conduit volume; previous work indicates it is a function of interconduit pit membrane structure. Native embolism levels during winter corroborated laboratory results on freezing: Quercus embolized 95% with the first fall freeze, Populus and Betula showed gradual increases to more than 90% embolism by winter's end, and Abies remained below 30%.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号