首页 | 本学科首页   官方微博 | 高级检索  
     


Clustering 100,000 protein structure decoys in minutes
Authors:Li Shuai Cheng  Bu Dongbo  Li Ming
Affiliation:Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. shuaicli@cityu.edu.hk
Abstract:Ab initio protein structure prediction methods first generate large sets of structural conformations as candidates (called decoys), and then select the most representative decoys through clustering techniques. Classical clustering methods are inefficient due to the pairwise distance calculation, and thus become infeasible when the number of decoys is large. In addition, the existing clustering approaches suffer from the arbitrariness in determining a distance threshold for proteins within a cluster: a small distance threshold leads to many small clusters, while a large distance threshold results in the merging of several independent clusters into one cluster. In this paper, we propose an efficient clustering method through fast estimating cluster centroids and efficient pruning rotation spaces. The number of clusters is automatically detected by information distance criteria. A package named ONION, which can be downloaded freely, is implemented accordingly. Experimental results on benchmark data sets suggest that ONION is 14 times faster than existing tools, and ONION obtains better selections for 31 targets, and worse selection for 19 targets compared to SPICKER’s selections. On an average PC, ONION can cluster 100,000 decoys in around 12 minutes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号