首页 | 本学科首页   官方微博 | 高级检索  
   检索      


STOP proteins
Authors:Bosc C  Oenarier E  Andrieux A  Job D
Institution:Institut National de la Santé Et de la Recherche Médicale, INSERM Unité 366, Département de Biologie Moléculaire et Structurale, Laboratoire du Cytosquelette, Commissariat à l'Energie Atomique de Grenoble, Grenoble , France.
Abstract:Microtubules assembled from pure tubulin in vitro are labile, rapidly depolymerized upon exposure to the cold. In contrast, in a number of cell types, cytoplasmic microtubules are stable, resistant to prolonged cold exposure. During the past years, the molecular basis of this microtubule stabilization in cells has been elucidated. Cold stability is due to polymer association with different variants of a calmodulin-regulated protein, STOP protein. The dynamic and hence the physiological consequences of STOP association with microtubules vary in different tissues. In neurons, STOP seems almost permanently associated with microtubules. STOP is apparently a major determinant of microtubule turnover in such cells and is required for normal neuronal differentiation. In cycling cells, only minor amounts of STOP are associated with interphase microtubules and STOP does not measurably affects microtubule dynamics. However, STOP is associated with mitotic microtubules in the spindle. Recent results indicate that such an association could be vital for meiosis and for the long-term fidelity of the mitotic process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号