首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An epsilonPKC-selective inhibitor attenuates back phosphorylation of a low molecular weight protein in cardiac myocytes
Authors:Johnson John A
Institution:The Department of Pharmacology and Toxicology, School of Medicine and The Program in Cell Signaling, The Institute of Molecular Medicine and Genetics, Medical College of Georgia, Agusta, GA 30912-2300, USA. jjohnson@mail.mcg.edu
Abstract:We have studied epsilon PKC-mediated phosphorylation events in neonatal cardiac myocytes using back phosphorylation. 3 nM 4-beta 12-myristate-13-acetate (PMA)-intact cell treatment preferentially activates epsilon PKC in these cells (Circ. Res. 76 (1995) 654) and caused decreased 32P incorporation (back phosphorylation) into an approximately 18-kDa protein. This response required physiological levels of free Mg(2+) and short (3-5 min) incubation periods in back phosphorylation assays. Introduction of a selective epsilon PKC translocation inhibitor (epsilon V1) into these cells attenuated the 3 nM PMA-induced back phosphorylation response while translocation inhibitors to the classical PKC or deltaPKC isozymes were without effect. Pretreatment of our cells with endothelin-1 (ET1) had similar effects to 3 nM PMA albeit the magnitude of the ET1 back phosphorylation response was about one-half that of 3 nM PMA. Our results suggest that epsilon PKC phosphorylates an approximately 18-kDa protein found in the particulate cell fraction of neonatal cardiac myocytes. Epsilon PKC modulates diverse cardiac responses including contraction, ion channel functions, hypertrophy, and ischemic preconditioning. Characterization of epsilon PKC-selective phosphotransferase events may reveal novel regulatory mechanisms for this enzyme in neonatal cardiac myocytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号