首页 | 本学科首页   官方微博 | 高级检索  
     


Reconstitution of the basal calcium transport in resealed human red blood cell ghosts
Authors:Hudec Roman  Lakatos Boris  Orlický Jozef  Varecka L'udovít
Affiliation:Department of Biochemistry and Microbiology, Slovak University of Technology, 812 37-Bratislava, Slovak Republic.
Abstract:The (45)Ca(2+) influx into right-side-out resealed ghosts (RG) prepared from human red blood cells (RBC) was measured. The (45)Ca(2+) equilibration occurred with t(1/2)=2.5 min and the steady-state was reached after 17 min with the level of 22+/-2 micromol/L(packed cells) at 37 degrees C. The rate of the influx was 97+/-17 micromol/L(packed cells)h. The (45)Ca(2+) influx was saturated with [Ca(2+)](0) at 4 mmol/L and was optimal at pH 6.5 and 30 degrees C. Divalent cations (10(-4)-10(-6)mol/L), nifedipine (10(-5)-10(-4)mol/L), DIDS (up to 10(-4)mol/L), and quinidine (10(-4)-10(-3)mol/L), inhibited the (45)Ca(2+) influx while uncoupler (10(-6)-10(-5)mol/L) stimulated it. In contrast to intact RBC, vanadate inhibited the (45)Ca(2+) influx when added to the external medium, however, the stimulation was observed when vanadate was present in media during both lysis and resealing. PMA had no effect under conditions found to stimulate the Ca(2+) influx in intact RBC. The results show that the Ca(2+) influx into RG is a carrier-mediated process but without control by protein kinase C and that the influx and efflux of Ca(2+) are coupled via the H(+) homeostasis similarly as in intact RBC but with modified mechanism.
Keywords:Human red blood cells   Resealed ghosts   Basal Ca2+ influx   Band 3   Uncoupler   PMA
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号