首页 | 本学科首页   官方微博 | 高级检索  
     


Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest
Authors:Yiyong Li  Guoyi Zhou  Wenjuan Huang  Juxiu Liu  Xiong Fang
Affiliation:1.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden,Chinese Academy of Sciences,Guangzhou,China;2.Graduate University of Chinese Academy of Sciences,Beijing,China
Abstract:

Aims

Subtropical ecosystems are receiving unprecedented changes in temperature as a consequence of anthropogenic activities, which potentially affects soil respiration (R s) and carbon (C) sequestration. Due to the large amounts of C store and cycle in subtropical forests, investigations about how R s and C sequestration respond to warming will be critical for our understanding of future global-scale climate and biogeochemical cycling.

Methods

In this study, we transferred soil samples and plant seedlings collected from a mixed forest to the growth chambers in two sites (300 m and 30 m a.s.l.), which induced an artificial warming of ca. 1 °C between the two corresponding forest mesocosms. We tested whether the modification of abiotic factors induced by the downward translocation could alter R s and soil C sequestration. We also investigated the effects on the biotic factors by including root biomass and soil microbial biomass.

Results

Our results showed that R s was greater in the warm site than in the control site, which were related to the higher aboveground biomass, litterfall and root biomass. R s showed a significantly positive exponential relationship with soil temperature. The downward translocation tended to decrease soil C sequestration, which was attributed to the decreased C use efficiency of soil microorganisms and increased root growth under downward translocation.

Conclusion

R s responded strongly to downward translocation, suggesting that climate warming exacerbated R s and tended to reduce soil C sequestration. The ability of subtropical forests to act as CO2 sink may be reduced under climate warming.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号