首页 | 本学科首页   官方微博 | 高级检索  
     


Receptor Tyrosine Kinases,TYRO3, AXL,and MER,Demonstrate Distinct Patterns and Complex Regulation of Ligand-induced Activation
Authors:Wen-I Tsou  Khanh-Quynh N. Nguyen  Daniel A. Calarese  Scott J. Garforth  Anita L. Antes  Sergey V. Smirnov  Steve C. Almo  Raymond B. Birge  Sergei V. Kotenko
Affiliation:From the Department of Biochemistry and Molecular Biology, University Hospital Cancer Center and ;§Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, and ;the Department of Biochemistry and ;Albert Einstein Cancer Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
Abstract:TYRO3, AXL, and MER receptors (TAMs) are three homologous type I receptor-tyrosine kinases that are activated by endogenous ligands, protein S (PROS1) and growth arrest-specific gene 6 (GAS6). These ligands can either activate TAMs as soluble factors, or, in turn, opsonize phosphatidylserine (PS) on apoptotic cells (ACs) and serve as bridging molecules between ACs and TAMs. Abnormal expression and activation of TAMs have been implicated in promoting proliferation and survival of cancer cells, as well as in suppressing anti-tumor immunity. Despite the fact that TAM receptors share significant similarity, little is known about the specificity of interaction between TAM receptors and their ligands, particularly in the context of ACs, and about the functional diversity of TAM receptors. To study ligand-mediated activation of TAMs, we generated a series of reporter cell lines expressing chimeric TAM receptors. Using this system, we found that each TAM receptor has a unique pattern of interaction with and activation by GAS6 and PROS1, which is also differentially affected by the presence of ACs, PS-containing lipid vesicles and enveloped virus. We also demonstrated that γ-carboxylation of ligands is essential for the full activation of TAMs and that soluble immunoglobulin-like TAM domains act as specific ligand antagonists. These studies demonstrate that, despite their similarity, TYRO3, AXL, and MER are likely to perform distinct functions in both immunoregulation and the recognition and removal of ACs.
Keywords:Apoptosis   Phospholipid   Receptor-tyrosine Kinase   Signal Transduction   Virus   AXL   GAS6   MER   TYRO3   Protein S
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号