首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Properties of rat and mouse beta-glucuronidase mRNA and cDNA, including evidence for sequence polymorphism and genetic regulation of mRNA levels
Authors:G Watson  M Felder  L Rabinow  K Moore  C Labarca  C Tietze  G Vander Molen  L Bracey  M Brabant  J D Cai
Abstract:cDNA clones containing partial sequences for beta-glucuronidase (beta G) were constructed from rat preputial gland RNA and identified by their ability to selectively hybridize beta G mRNA. One such rat clone was used to isolate several cross-hybridizing clones from a mouse-cDNA library prepared from kidney RNA from androgen-treated animals. Together, the set of mouse clones spans about 2.0 kb of the 2.6-kb beta G mRNA. Using these cDNA clones as probes, a genomic polymorphism for DNA restriction fragment size was found that proved to be genetically linked to the beta G gene complex. A fragment of beta G cDNA was subcloned into a vector carrying an SP6 polymerase promoter to provide a template for the in vitro synthesis of single-stranded RNA complementary to beta G mRNA. This provided an extremely sensitive probe for the assay of beta G mRNA sequences. Using either nick-translated cDNA or transcribed RNA as a hybridization probe, we found that mouse beta G RNA levels are strongly induced by testosterone, and that induction by testosterone is pituitary-dependent. During the lag period preceding induction, during the induction period itself, and during deinduction following removal of testosterone, beta G mRNA levels paralleled rates of beta G synthesis previously measured by in vivo pulse-labelling experiments. Genetic variation in the extent of induction affected either the level of beta G mRNA or its efficiency of translation depending on the strain of mice tested.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号