首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating
Authors:Henrikson Charles A  Xue Tian  Dong Peihong  Sang Dongpei  Marban Eduardo  Li Ronald A
Affiliation:Institute of Molecular Cardiobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Abstract:I(f), encoded by the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel family, is a key player in cardiac and neuronal pacing. Although HCN channels structurally resemble voltage-gated K(+) (Kv) channels, their structure-function correlation is much less clear. Here we probed the functional importance of the HCN1 S3-S4 linker by multiple substitutions of its residues. Neutralizing Glu(235), an acidic S3-S4 linker residue conserved in all hyperpolarization-activated channels, by Ala substitution produced a depolarizing activation shift (V(12) = -65.0 +/- 0.7 versus -70.6 +/- 0.7 mV for wild-type HCN1); the charge-reversed mutation E235R shifted activation even more positively (-56.2 +/- 0.5 mV). Increasing external Mg(2+) mimicked the progressive rightward shifts of E235A and E235R by gradually shifting activation (V(12) = 1 < 3 < 10 < 30 mm); Delta V(12) induced by 30 mm Mg(2+) was significantly attenuated for E235A (+7.9 +/- 1.2 versus +11.3 +/- 0.9 mV for wild-type HCN1) and E235R (+3.3 +/- 1.4 mV) channels, as if surface charges were already shielded. Consistent with an electrostatic role, the energetic changes associated with Delta V(12) resulting from various Glu(235) substitutions (i.e. Asp, Ala, Pro, His, Lys, and Arg) displayed a strong correlation with their charges (Delta Delta G = -2.1 +/- 0.3 kcal/mol/charge; r = 0.94). In contrast, D233E, D233A, D233G, and D233R did not alter activation gating. D233C (in C318S background) was also not externally accessible when probed with methanethiosulfonate ethylammonium (MTSEA). We conclude that the S3-S4 linker residue Glu(235) influences activation gating, probably by acting as a surface charge.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号