首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intermolecular disulfide bond formation promotes immunoglobulin aggregation: Investigation by fluorescence correlation spectroscopy
Authors:Moupriya Nag  Kallol Bera  Soumen Basak
Institution:Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
Abstract:Protein aggregation generally results from association between hydrophobic regions of individual monomers. However, additional mechanisms arising from specific interactions, such as intermolecular disulfide bond formation, may also contribute to the process. The latter is proposed to be the initiating pathway for aggregation of immunoglobulin (IgG), which is essential for triggering its immune response. To test the veracity of this hypothesis, we have employed fluorescence correlation spectroscopy to measure the kinetics of aggregation of IgG in separate experiments either allowing or inhibiting disulfide formation. Fluorescence correlation spectroscopy measurements yielded a diffusion time (τD) of ~200 µsec for Rhodamine‐labeled IgG, corresponding to a hydrodynamic radius (RH) of 56 Å for the IgG monomer. The aggregation kinetics of the protein was followed by monitoring the time evolution of τD under conditions in which its cysteine residues were either free or blocked. In both cases, the progress curves confirmed that aggregation proceeded via the nucleation‐dependent polymerization pathway. However, for aggregation in the presence of free cysteines, the lag times were shorter, and the aggregate sizes bigger, than their respective counterparts for aggregation in the presence of blocked cysteines. This result clearly demonstrates that formation of intermolecular disulfide bonds represents a preferred pathway in the aggregation process of IgG. Fluorescence spectroscopy showed that aggregates formed in experiments where disulfide formation was prevented denatured at lower concentration of guanidine hydrochloride than those obtained in experiments where the disulfides were free to form, indicating that intermolecular disulfide bridging is a valid pathway for IgG aggregation. Proteins 2015; 83:169–177. © 2014 Wiley Periodicals, Inc.
Keywords:immunoglobulin  fluorescence correlation spectroscopy  disulfide  protein aggregation  nucleation dependent polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号