首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Key mutations stabilize antigen‐binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage
Authors:Matthew D Therkelsen  Thomas B Kepler  M Anthony Moody  Barton F Haynes  Hua‐Xin Liao  Stephen C Harrison  David E Shaw
Institution:1. Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts;2. Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts;3. Duke Human Vaccine Institute, Duke University Medical School, Durham, North Carolina;4. Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts;5. D. E. Shaw Research, New York, New York;6. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
Abstract:Affinity maturation, the process in which somatic hypermutation and positive selection generate antibodies with increasing affinity for an antigen, is pivotal in acquired humoral immunity. We have studied the mechanism of affinity gain in a human B‐cell lineage in which two main maturation pathways, diverging from a common ancestor, lead to three mature antibodies that neutralize a broad range of H1 influenza viruses. Previous work showed that increased affinity in the mature antibodies derives primarily from stabilization of the CDR H3 loop in the antigen‐binding conformation. We have now used molecular dynamics simulations and existing crystal structures to identify potentially key maturation mutations, and we have characterized their effects on the CDR H3 loop and on antigen binding using further simulations and experimental affinity measurements, respectively. In the two maturation pathways, different contacts between light and heavy chains stabilize the CDR H3 loop. As few as two single‐site mutations in each pathway can confer substantial loop stability, but none of them confers experimentally detectable stability on its own. Our results support models of the germinal center reaction in which two or more mutations can occur without concomitant selection and show how divergent pathways have yielded functionally equivalent antibodies. Proteins 2014; 83:771–780. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Keywords:molecular dynamics  protein–  protein interaction  kinetics measurements  protein evolution  acquired immunity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号