首页 | 本学科首页   官方微博 | 高级检索  
     


Flexibility in the N‐terminal actin‐binding domain: Clues from in silico mutations and molecular dynamics
Authors:Pinak Chakrabarti
Affiliation:1. Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India;2. Centre of Excellence in Bionformatics, Bose Institute, Kolkata, West Bengal, India
Abstract:Dystrophin is a long, rod‐shaped cytoskeleton protein implicated in muscular dystrophy (MDys). Utrophin is the closest autosomal homolog of dystrophin. Both proteins have N‐terminal actin‐binding domain (N‐ABD), a central rod domain and C‐terminal region. N‐ABD, composed of two calponin homology (CH) subdomains joined by a helical linker, harbors a few disease causing missense mutations. Although the two proteins share considerable homology (>72%) in N‐ABD, recent structural and biochemical studies have shown that there are significant differences (including stability, mode of actin‐binding) and their functions are not completely interchangeable. In this investigation, we have used extensive molecular dynamics simulations to understand the differences and the similarities of these two proteins, along with another actin‐binding protein, fimbrin. In silico mutations were performed to identify two key residues that might be responsible for the dynamical difference between the molecules. Simulation points to the inherent flexibility of the linker region, which adapts different conformations in the wild type dystrophin. Mutations T220V and G130D in dystrophin constrain the flexibility of the central helical region, while in the two known disease‐causing mutants, K18N and L54R, the helicity of the region is compromised. Phylogenetic tree and sequence analysis revealed that dystrophin and utrophin genes have probably originated from the same ancestor. The investigation would provide insight into the functional diversity of two closely related proteins and fimbrin, and contribute to our understanding of the mechanism of MDys. Proteins 2015; 83:696–710. © 2015 Wiley Periodicals, Inc.
Keywords:muscular dystrophy  actin‐binding proteins  open and closed states  structural flexibility  oligomeric state  dimer vs monomer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号