首页 | 本学科首页   官方微博 | 高级检索  
     


Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases
Authors:Zhao Haibo
Affiliation:Division of Endocrinology and Metabolism, Department of Internal Medicine, Center for Osteoporosis and Bone Metabolic Diseases, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA. hzhao@uams.edu.
Abstract:The endocytic and exocytic/secretory pathways are two major intracellular membrane trafficking routes that regulate numerous cellular functions in a variety of cell types. Osteoblasts and osteoclasts, two major bone cells responsible for bone remodeling and homeostasis, are no exceptions. During the past few years, emerging evidence has pinpointed a critical role for endocytic and secretory pathways in osteoblast and osteoclast differentiation and function. The endosomal membrane provides a platform to integrate bone tropic signals of hormones and growth factors in osteoblasts. In osteoclasts, endocytosis, followed by transcytosis, of degraded bone matrix promotes bone resorption. Secretory pathways, especially lysosome secretion, not only participate in bone matrix deposition by osteoblasts and degradation of mineralized bone matrix by osteoclasts; they may also be involved in the coupling of bone resorption and bone formation during bone remodeling. More importantly, mutations in genes encoding regulatory factors within the endocytic and secretory pathways have been identified as causes for bone diseases. Identification of the molecular mechanisms of these genes in bone cells may provide new therapeutic targets for skeletal disorders.
Keywords:bone formation  bone remodeling  bone resorption  endocytosis  exocytosis  intracellular membrane trafficking  osteoblast  osteoclast
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号