首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3'-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage.
Authors:A Jilani  D Ramotar  C Slack  C Ong  X M Yang  S W Scherer  D D Lasko
Institution:Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2.
Abstract:Mammalian polynucleotide kinases catalyze the 5'-phosphorylation of nucleic acids and can have associated 3'-phosphatase activity, predictive of an important function in DNA repair following ionizing radiation or oxidative damage. The sequences of three tryptic peptides from a bovine 60-kDa polypeptide that correlated with 5'-DNA kinase and 3'-phosphatase activities identified human and murine dbEST clones. The 57.1-kDa conceptual translation product of this gene, polynucleotide kinase 3'-phosphatase (PNKP), contained a putative ATP binding site and a potential 3'-phosphatase domain with similarity to L-2-haloacid dehalogenases. BLAST searches identified possible homologs in Caenorhabditis elegans, Schizosaccharomyces pombe, and Drosophila melanogaster. The gene was localized to chromosome 19q13.3-13.4. Northern analysis indicated a 2-kilobase mRNA in eight human tissues. A glutathione S-transferase-PNKP fusion protein displayed 5'-DNA kinase and 3'-phosphatase activities. PNKP is the first gene for a DNA-specific kinase from any organism. PNKP expression partially rescued the sensitivity to oxidative damaging agents of the Escherichia coli DNA repair-deficient xth nfo double mutant. PNKP gene function restored termini suitable for DNA polymerase, consistent with in vivo removal of 3'-phosphate groups, facilitating DNA repair.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号