Metabolite Profiles of Maize Leaves in Drought,Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield |
| |
Authors: | Toshihiro Obata Sandra Witt Jan Lisec Natalia Palacios-Rojas Igor Florez-Sarasa Salima Yousfi Jose Luis Araus Jill E. Cairns Alisdair R. Fernie |
| |
Affiliation: | Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., S.W., J.L., I.F.-S., A.R.F.);;International Maize and Wheat Improvement Center, Kilometer 45 Carretera Mexico-Veracruz, Texcoco, Mexico 56130 (N.P.-R.);;Department de Biologia Vegetal, Universitat de Barcelona, 08028 Barcelona, Spain (S.Y., J.L.A.); and;International Maize and Wheat Improvement Center, Southern Africa Regional Office, Harare, Zimbabwe (J.E.C.) |
| |
Abstract: | The development of abiotic stress-resistant cultivars is of premium importance for the agriculture of developing countries. Further progress in maize (Zea mays) performance under stresses is expected by combining marker-assisted breeding with metabolite markers. In order to dissect metabolic responses and to identify promising metabolite marker candidates, metabolite profiles of maize leaves were analyzed and compared with grain yield in field trials. Plants were grown under well-watered conditions (control) or exposed to drought, heat, and both stresses simultaneously. Trials were conducted in 2010 and 2011 using 10 tropical hybrids selected to exhibit diverse abiotic stress tolerance. Drought stress evoked the accumulation of many amino acids, including isoleucine, valine, threonine, and 4-aminobutanoate, which has been commonly reported in both field and greenhouse experiments in many plant species. Two photorespiratory amino acids, glycine and serine, and myoinositol also accumulated under drought. The combination of drought and heat evoked relatively few specific responses, and most of the metabolic changes were predictable from the sum of the responses to individual stresses. Statistical analysis revealed significant correlation between levels of glycine and myoinositol and grain yield under drought. Levels of myoinositol in control conditions were also related to grain yield under drought. Furthermore, multiple linear regression models very well explained the variation of grain yield via the combination of several metabolites. These results indicate the importance of photorespiration and raffinose family oligosaccharide metabolism in grain yield under drought and suggest single or multiple metabolites as potential metabolic markers for the breeding of abiotic stress-tolerant maize.The increasing world population coupled to environmental deterioration is creating ever greater pressure on our capacity for sustainable food productivity. Alongside biotic stresses, abiotic stresses such as drought, heat, salinity, and nutrient deficiency greatly reduce yields in crop fields either when present alone or in combination. Breeding for more resilient crops, therefore, is one of the major approaches to cope with the increasing challenges in world agriculture. Considerable research effort has thus been invested in order to dissect plant responses to individual stresses at various levels (for review, see Urano et al., 2010; Lopes et al., 2011; Obata and Fernie, 2012), but the interaction between different stresses has been far less investigated (Cairns et al., 2012b, 2013; Suzuki et al., 2014). In general, the combination of stresses additively affects plant physiology (i.e. the symptoms of the individual stresses appear simultaneously) and synergistically diminishes the yield and productivity of plants (Keleş and Öncel, 2002; Giraud et al., 2008; Vile et al., 2012; Suzuki et al., 2014). The molecular responses, however, are not simply additive and are rarely predicted from the responses to individual stresses (Rizhsky et al., 2002, 2004; Prasch and Sonnewald, 2013; Rasmussen et al., 2013). Information from carefully controlled greenhouse experiments has begun to dissect the molecular mechanisms by which plants, in particular Arabidopsis (Arabidopsis thaliana), respond to drought and temperature stresses (Skirycz et al., 2010, 2011; Skirycz and Inzé, 2010; Bowne et al., 2012; Tardieu, 2012; Verkest et al., 2015). Our knowledge of the molecular basis of the responses of crop species in a field environment, however, is considerably less well advanced (Araus et al., 2008; Cabrera-Bosquet et al., 2012). That said, a large number of genotypes have been generated on the basis of their resistance to both biotic and abiotic stresses (for review, see Bänziger et al., 2006; Takeda and Matsuoka, 2008; Cooper et al., 2014), and the genome sequencing and molecular characterization of a range of stress-tolerant plant species have recently been reported (Wu et al., 2012; Ma et al., 2013; Bolger et al., 2014; Tohge et al., 2014). These studies are not only important as basic research for further studies in crops but also are a prerequisite in the development of molecular marker-based approaches to improve crop tolerance to stress.As a first step toward this goal, a deeper understanding of the plant responses to the stressful environment, especially those to multiple stress conditions under field conditions, is crucial for the improvement of stress-tolerant crops. This is important on two levels: (1) in the field, singular abiotic stresses are rare; and (2) yield and stress adaptation are complex traits that render breeding gains slower than would be expected under optimal conditions (Bruce et al., 2002). Recent studies have revealed that the response of plants to combinations of two or more stress conditions is unique and cannot be directly extrapolated from their responses to the different stresses when applied individually. This would be a result of complex combinations of different, and sometimes opposing, responses in signaling pathways, including those that may interact and inhibit one another (Prasch and Sonnewald, 2013; Rasmussen et al., 2013; Suzuki et al., 2014).Maize (Zea mays) is grown in over 170 million ha worldwide, of which 130 million ha are in less-developed countries (FAO, 2014). In sub-Saharan Africa, maize is a staple crop; however, yields in this region have stagnated at less than 2 tons ha−1, while maize yields worldwide have continued to increase (Cairns et al., 2012a). Low yields in sub-Saharan Africa are largely associated with drought stress (DS) and low soil fertility (Bänziger and Araus, 2007). Additionally, simulation studies indicate that maize yield in Africa is likely to be significantly impaired by heat stress (HS; Lobell and Burke, 2010; Lobell et al., 2011), such as can be anticipated as a result of the changes in climate predicted for the coming decades (Müller et al., 2011). Moreover, the sensitivity of maize yield to heat is exacerbated under drought conditions (Lobell et al., 2011; Cairns et al., 2012a, 2012b, 2013). Therefore, the development of maize germplasm tolerant to drought and heat conditions is of utmost importance to both increase yields and offset predicted yield losses under projected climate change scenarios (Easterling et al., 2007), especially in sub-Saharan Africa. While direct selection for grain yield under DS has resulted in admirable gains in grain yield under stress (Bänziger et al., 2006; Cairns et al., 2013), further improvement requires the incorporation of additional selection traits (Cairns et al., 2012a, 2012b). In recent years, genetic and phenotypic markers have been searched extensively for drought tolerance of maize by high-throughput genomic and phenotyping approaches, respectively (Tuberosa and Salvi, 2006; Wen et al., 2011; Araus et al., 2012; Cairns et al., 2013; Prasanna et al., 2013; Araus and Cairns, 2014; Tsonev et al., 2014). Moreover, metabolic markers started to draw attention due to their close relationship with yield phenotypes (Fernie and Schauer, 2009; Redestig et al., 2011; Riedelsheimer et al., 2012a, 2012b; Witt et al., 2012; Degenkolbe et al., 2013). The accumulation of some metabolites has been reported to be directly related to the performance of potato (Solanum tuberosum) cultivars in beetle resistance in the field (Tai et al., 2014). Additionally, identical genomic regions were mapped as both agronomic and metabolic quantitative trait loci in field-grown maize and wheat (Triticum aestivum), indicating the utility of metabolic traits for breeding selection (Riedelsheimer et al., 2012b; Hill et al., 2015). A recent study showed that genetic gains in maize grain yield under DS were higher using a molecular marker-based approach than conventional breeding (Beyene et al., 2015).Here, we focused on the relationship between leaf metabolites and grain yield under drought, heat, and simultaneous drought and heat conditions in the field. The negative effect of DS on maize yield is especially acute during the reproductive stage between tassel emergence and early grain filling (Grant et al., 1989), when it is believed to induce premature seed desiccation and to limit grain filling. Grain is more susceptible to DS than vegetative tissues; therefore, the prediction of grain yield from the physiological parameter of leaves is a challenge (Sangoi and Salvador, 1998; Khodarahmpour and Hamidi, 2011). Nevertheless, maize yield is dependent on both the assimilate supply to the kernel (source) and the potential of the kernel to accommodate this assimilate (sink potential; Jones and Simmons, 1983). Breeding for modern temperate hybrids has focused more on the sink potential, particularly under stress conditions (Tollenaar and Lee, 2006); therefore, there should be considerable potential remaining to improve source ability. DS and HS would be anticipated largely to affect leaf metabolism and especially photosynthesis, compromising the source capacity of leaves (Chaves et al., 2009; Lawlor and Tezara, 2009; Osakabe et al., 2014). In keeping with this, drought was found to have the most dramatic effect on the metabolite composition in leaves compared with other organs in our previous greenhouse experiments (Witt et al., 2012). Since the source ability is closely related to leaf metabolism, the leaf metabolite profile should have a close relationship to grain yield particularly under conditions of stress. Given that several recent studies have indicated the importance of metabolic preadaptation to various stress tolerances in plants (Sanchez et al., 2011; Benina et al., 2013), we also postulate that basal metabolite levels under optimal growth conditions could be correlated to stress tolerance. In order to test this, metabolite profiles of the leaf blades of 10 hybrids were analyzed in field experiments conducted at the International Maize and Wheat Improvement Center (CIMMYT) subtropical experimental station in 2010 and 2011 in which the plants were exposed to singular or combined drought and heat stresses (DS+HS; Cairns et al., 2012a, 2013). The results are discussed both in the context of current models of stress tolerance and with respect to their practical implications for future breeding strategies. |
| |
Keywords: | |
|
|