首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutations of rat surfactant protein A have distinct effects on its glycosylation,secretion, aggregation and degradation
Authors:Wenbing Yang  Haitao Shen  Guodong Fang  Hui Li  Lan Li  Fang Deng  Wei Gu  Kangsheng Li  Lian Ma  Jiang Gu  Yongyu Wang
Institution:1. Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China;2. Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China;3. Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China;4. Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
Abstract:

Aims

Surfactant protein A (SP-A) plays critical roles in the innate immune system and surfactant homeostasis of the lung. Mutations in SP-A2 of the carbohydrate recognition domain (CRD) impair its glycosylation and are associated with pulmonary fibrosis in humans. We aim to examine how mutations in SP-A that impair its glycosylation affect its biological properties and lead to disease.

Main methods

We generated rat SP-A constructs with two types of mutations that impair its glycosylation: N-glycosylation site mutations (N21T, N207S and N21T/N207S) and disease-associated CRD mutations (G231V, F198S). We transfected these constructs into Chinese hamster ovary (CHO)-K1 cells and assessed biochemical differences in cellular and secreted wild-type and mutant SP-As by western blot, immunofluorescence, and sensitivity to enzymatic digestion.

Key findings

Mutations of the CRD completely impaired SP-A secretion, whereas mutations of N-glycosylation sites had little effect. Both types of mutations formed nonidet p-40 (NP-40) insoluble aggregates, but the aggregates only from CRD mutations could be partially rescued by a chemical chaperone, 4-phenylbutyrate acid (4-PBA). The majority of CRD mutant SP-A was retained in the endoplasmic reticulum. Moreover, both types of mutations reduced SP-A stability, with CRD mutant SP-A being more sensitive to chymotrypsin digestion. Both types of soluble mutant SP-A could be degraded by the proteasome pathway, while insoluble aggregates could be additionally degraded by the lysosomal pathway.

Significance

Our data provide evidence that the differential glycosylation of SP-A may play distinct roles in SP-A secretion, aggregation and degradation which may contribute to familial pulmonary fibrosis caused by SP-A2 mutations.
Keywords:Aggregation  Degradation  Glycosylation  Protein secretion  Surfactant protein A  Familial pulmonary fibrosis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号