首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of sub-chronic aluminum chloride exposure on rat ovaries
Authors:Y Fu  FB Jia  J Wang  M Song  SM Liu  YF Li  SZ Liu  QW Bu
Institution:1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;2. Veterinary and Animal Husbandry Department, Liaoning Agricultural College, Liaoning 115009, China;3. School of Animal Biology, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009, Australia;4. Weike Biotechnology Development Company, Harbin 150069, China;5. Veterinary Health And Epidemic Prevention Station, The Forest Industry Region of Heilongjiang, Harbin 150008, China
Abstract:

Aims

This experiment investigated the effects of sub-chronic aluminum chloride (AlCl3) exposure on rat ovaries.

Main methods

Eighty female Wistar (5 weeks old) rats, weighed 110–120 g, were randomly divided into four treatment groups: control group (CG), low-dose group (LG, 64 mg/kg BW AlCl3), mid-dose group (MG, 128 mg/kg BW AlCl3) and high-dose group (HG, 256 mg/kg BW AlCl3). The AlCl3 was administered in drinking water for 120 days. The ovarian ultrastructure was observed. The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), succinate dehydrogenase (SDH), Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase, the contents of Fe, Cu and Zn, and the protein expression of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in the ovary were determined.

Key findings

The results showed that the structure of the ovary was disrupted, the activities of ALP, ACP, SDH, Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase, the contents of Zn, Fe and the protein expression of FSHR and LHR were lowered, and the content of Cu was increased in AlCl3-treated rats than those in control.

Significance

The results indicate that sub-chronic AlCl3 exposure caused the damage of the ovarian structure, the disturbed metabolism of Fe, Zn and Cu and the decreased activities of Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase in the ovary, which could result in suppressed energy supply in the ovary. A combination of suppression of energy supply and reduction of expression of FSHR and LHR could inhibit ovulation and corpus luteum development, leading to infertility in female rats.
Keywords:Trace minerals  Energy supply  Ovary  Reproduction function  Female rats
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号