首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chagas disease: a homology model for the three-dimensional structure of the Trypanosoma cruzi ribosomal P0 antigenic protein
Authors:Juan Arturo Gomez Barroso  Carlos Fernando Aguilar
Institution:1. Laboratorio de Biología Molecular Estructural; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
Abstract:Ribosomal P proteins form a “stalk” complex in the large subunit of the ribosomes. In Trypanosoma cruzi, the etiological agent of Chagas disease, the complex is formed by five P protein members: TcP0, TcP1α, TcP1β, TcP2α and TcP2β. The TcP0 protein has 34 kDa, and TcP1 and TcP2 proteins have 10 kDa. The structure of T. cruzi P0 and the stalk complex TcP0–TcP1α–TcP1β–TcP2α–TcP2β have not been solved to date. In this work, we constructed a three-dimensional molecular model for TcP0 using homology modeling as implemented in the MODELLER 9v12 software. The model was constructed using different templates: the X-ray structures of the protein P0 from Pirococcus horikoshii, a segment from the Danio renio Ca+2/K+ channel and the C-terminal peptide (C13) from T. cruzi ribosomal P2 protein; the Cryo-EM structure of Triticum aestivum P0 protein and the NMR structure of Homo sapiens P1 ribosomal protein. TcP0 has a 200-residue-long N-terminal, which is an α/β globular stable domain, and a flexible C-terminal, 120-residue-long domain. The molecular surface electrostatic potential and hydrophobic surface were calculated. The surface properties are important for the C-terminal's antigenic properties. They are also responsible for P0-specific binding to RNA26S and the binding to the P1–P2 proteins. We explored and identified protein interactions that may be involved in conformational stability. The structure proposed in this work represents a first structural report for the TcP0 protein.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号