首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush)
Authors:Adam Kokotkiewicz  Adam Bucinski  Maria Luczkiewicz
Institution:1. Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416, Gdańsk, Poland
2. Department of Biopharmacy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. dr A. Jurasza 2, 85-089, Bydgoszcz, Poland
Abstract:Callus cultures of the endemic South-African legume Cyclopia subternata were cultivated under varying light and temperature conditions to determine their influence on biomass growth and bioflavonoids accumulation. Experimental modifications of light included complete darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli were also subjected to elevated temperature or cold stress. Among the tested light regimes, cultivation under blue light resulted in the highest levels of hesperidin (H)—118.00 mg 100 g?1 dry weight (DW) on 28 days of experiment, as well as isoflavones: 7-O-β-glucosides of calycosin (CG), pseudobaptigenin (PG) and formononetin (FG)—28.74, 19.26 and 10.32 mg 100 g?1 DW, respectively, in 14-days old calli. UVC irradiation applied on 20 days stimulated the accumulation of H (204.14 mg 100 g?1 DW), CG (31.84 mg 100 g?1 DW) and PG (18.09 mg 100 g?1 DW) in 28 days culture by 140, 46 and 165 %, respectively, without negatively influencing callus growth. Low temperature (13 °C) increased CG content by over 1,500 % (235.29 mg 100 g?1 DW) when applied during the whole 28-days growth cycle, at the same time causing 95 % decrease in culture growth in comparison to reference calli maintained at 24 °C. On the contrary, elevated temperature (29 °C) applied during the second half of the culture period resulted in over 300 and 500 % increase in CG and PG content (61.76 and 58.89 mg 100 g?1, respectively) while maintaining relatively high biomass yield.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号