首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sugar utilization and anoxia tolerance in rice roots acclimated by hypoxic pretreatment
Authors:Kato-Noguchi Hisashi
Institution:Faculty of Agriculture, Department of Biochemistry and Food Science, Kagawa University, Miki, Kagawa, Japan. hisashi@ag.kagawa-u.ac.jp
Abstract:Although most cereal roots cannot elongate under anoxic conditions, primary roots of three-day-old rice (Oryza sativa L.) seedlings were able to elongate during a 24-h period of anoxia. Hypoxic pretreatment (H-PT) increased the elongation of their roots. Sucrose synthase (EC 2.4.1.13), glucokinase (EC 2.7.1.2), fructokinase (EC 2.7.1.4), pyruvate decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1) activities were increased by anoxia in both H-PT and non-pretreated (N-PT) roots. However, these activities were greater in the H-PT roots than in the N-PT roots. The average rate of production of ethanol for the initial 6h after the onset of anoxia was 3.7 and 1.4 micromolg(-1) fresh weight h(-1) for the H-PT and N-PT roots, respectively, suggesting that ethanolic fermentation may increase more quickly in the H-PT roots than in the N-PT roots. Roots of the seedlings lost ATP and total adenine nucleotides in anoxia, however, the H-PT roots maintained higher levels of ATP and total adenine nucleotides compared to the N-PT roots. These results show that rice roots are able to utilize the set of enzymes involved in the metabolism of soluble sugars under anoxia. The ability to maintain an active fermentative metabolism for production of ATP by fueling the glycolytic pathway with fermentable carbohydrate is probably greater in H-PT than in N-PT roots.
Keywords:Anoxia tolerance  ATP  Ethanolic fermentation  Hypoxic pretreatment  Glycolysis  Oryza sativa
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号