首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Crystal Structure of the Novobiocin Biosynthetic Enzyme NovP: The First Representative Structure for the TylF O-Methyltransferase Superfamily
Authors:Inmaculada Gómez García  Clare EM Stevenson  Isabel Usón  Christopher T Walsh
Institution:1 Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
2 Institucio Catalana de Recerca i Estudis Avançats at Instituto de Biologia Molecular de Barcelona, Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona, Spain
3 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
Abstract:NovP is an S-adenosyl-l-methionine-dependent O-methyltransferase that catalyzes the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic: previous crystallographic studies have shown that this group interacts directly with the target enzyme DNA gyrase, which is a validated drug target. We have determined the high-resolution crystal structure of NovP from Streptomyces spheroides as a binary complex with its desmethylated cosubstrate S-adenosyl-l-homocysteine. The structure displays a typical class I methyltransferase fold, in addition to motifs that are consistent with a divalent-metal-dependent mechanism. This is the first representative structure of a methyltransferase from the TylF superfamily, which includes a number of enzymes implicated in the biosynthesis of antibiotics and other therapeutics. The NovP structure reveals a number of distinctive structural features that, based on sequence conservation, are likely to be characteristic of the superfamily. These include a helical ‘lid’ region that gates access to the cosubstrate binding pocket and an active center that contains a 3-Asp putative metal binding site. A further conserved Asp likely acts as the general base that initiates the reaction by deprotonating the 4-OH group of the noviose unit. Using in silico docking, we have generated models of the enzyme-substrate complex that are consistent with the proposed mechanism. Furthermore, these models suggest that NovP is unlikely to tolerate significant modifications at the noviose moiety, but could show increasing substrate promiscuity as a function of the distance of the modification from the methylation site. These observations could inform future attempts to utilize NovP for methylating a range of glycosylated compounds.
Keywords:OMT  O-methyltransferase  SAM  l-methionine" target="_blank">S-adenosyl-l-methionine  SAH  l-homocysteine" target="_blank">S-adenosyl-l-homocysteine  PDB  Protein Data Bank  SynOMT  Synechocystis OMT  CCoAOMT  alfalfa caffeoyl CoA OMT  DDN  desmethyldescarbamoyl novobiocin
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号