首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational changes and molecular mobility in plasticized proteins
Authors:Athamneh Ahmad I  Griffin Michael  Whaley Meocha  Barone Justin R
Affiliation:Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, Virginia 24061, USA.
Abstract:Most biopolymers exist in a plasticized state, whether it is naturally with water or unnaturally with glycerol or other suitable polyol, to make a flexible material. We have found that the extent to which a biopolymer can be plasticized is dependent on its molecular and higher order structures outside of simply molecular weight. Lactalbumin, ovalbumin, corn zein, wheat gluten, and feather keratin were plasticized with glycerol from very low to very high amounts. The conformation of the proteins was monitored with Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) and correlated with the tensile modulus. Protein conformational changes were pronounced for polar proteins with a low amount of cysteine. FT-IR showed that the conformational changes resulted in ordering of the protein at low to moderate plasticization levels. For proteins with little resistance to conformational changes, additional small-scale ordering occurred around the glass transition, as observed in XRD. Accurate comparison of plasticized proteins was dependent on knowing whether or not the protein was glassy or rubbery at room temperature as no differences arose in the glassy state. The transition from glassy to rubbery behavior with plasticization level can be found from modulus, FT-IR, and XRD data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号