首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arbuscular mycorrhiza confers Pb tolerance in <Emphasis Type="Italic">Calopogonium mucunoides</Emphasis>
Authors:Lucas Anjos de Souza  Sara Adrián López de Andrade  Sarah Caroline Ribeiro de Souza  Marlene Aparecida Schiavinato
Institution:(1) Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil;
Abstract:Heavy metals (HMs) are environmental pollutants of great concern to humans because of their high potential toxicity. Lead is a HM that is present in the soil in very small amounts, but anthropogenic activities have increased its content in some locations, which can make these areas unproductive or inappropriate for crop production. However, there are some plants that can grow in contaminated soils and, thus, can be useful for the removal or stabilisation of such contaminants. In addition, plants that are not able to tolerate high concentrations of HMs in the soil can become tolerant or increase their performance when associated with arbuscular mycorrhizal (AM) fungi. Accordingly, this study was carried out to verify whether the inoculation of Glomus etunicatum, an AM fungus species, in Calopogonium mucunoides would influence plant tolerance to increasing concentrations of Pb in the soil. The experimental design was completely randomised, in a 2 × 4 factorial design, and the treatments consisted of inoculation (or not) with the AM fungus, G. etunicatum, and the addition of four Pb concentrations (0, 250, 500 or 1,000 mg kg−1) to the soil. The results showed that the association of C. mucunoides with G. etunicatum promoted biomass production, and nutrient uptake (P, S and Fe) was also positively influenced by mycorrhization. The malondialdehyde content was higher in non-mycorrhizal leaves, suggesting a reduction in the damage to membranes by lipid peroxidation in plants associated with mycorrhizae. However, the Pb concentration in the shoots did not differ between the mycorrhizal and non-mycorrhizal plants. The results of our study suggest that the AM symbiosis can be considered very effective in contributing to the tolerance of C. mucunoides to Pb.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号