首页 | 本学科首页   官方微博 | 高级检索  
     


Transduction mechanism(s) of Na-saccharin in the blowfly Protophormia terraenovae: evidence for potassium and calcium conductance involvement
Authors:Carla Masala  Paolo Solari  Giorgia Sollai  Roberto Crnjar  Anna Liscia
Affiliation:(1) Department of Experimental Biology, Section of General Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, Km 4.500, 09042 Monserrato, CA, Italy;
Abstract:The study on transduction mechanisms underlying bitter stimuli is a particularly intriguing challenge for taste researchers. The present study investigates, in the labellar chemosensilla of the blowfly Protophormia terraenovae, the transduction mechanism by which saccharin evokes the response of the “deterrent” cell, with particular attention to the contribution of K+ and Ca2+ current and the role of cyclic nucleotides, since second messengers modulate Ca2+, Cl and K+ currents to different extents. As assessed by extracellular single-sensillum recordings, our results show that the addition of a Ca2+ chelator such as EGTA or the Ca2+ current blockers SK&F-96365, Mibefradil, Nifedipine and W-7 decrease the response of the “deterrent” cell to saccharin. A similar decreasing effect was also obtained following the addition of 4-aminopyridine, a K+ current blocker. On the contrary, the membrane-permeable cyclic nucleotide 8-bromoguanosine 3′,5′-cyclic monophosphate (8Br-cGMP) activates this cell and shows an additive effect when presented mixed with saccharin. Our results are consistent with the hypothesis that in the labellar chemosensilla of the blowfly both Ca2+ and K+ ions are involved in the transduction mechanism of the “deterrent” cell in response to saccharin. Our results also suggest a possible pathway common to saccharin and 8Br-cGMP.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号