首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mg2+ and Ni2+ ion effect on stability and structure of triple poly I.poly A.poly I helix
Authors:Sorokin V A  Valeev V A  Gladchenko G O  Degtyar M V  Andrus E A  Karachevtsev V A  Blagoi Yu P
Institution:B.I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov, Ukraine. sorokin@ilt.kharkov.ua
Abstract:The effects of Mg2+ and Ni2+ ions on the absorption spectra of IMP, single-stranded poly I and three-stranded A2I in solutions with 0.1 M Na+ (pH 7) have been studied. In contrast to Mg2+ ions, the Ni2+ ions affect the absorption spectra of these polynucleotides and IMP. The concentration dependences of the intensity at the extrema in the differential UV spectra suggest that in the region of high Ni2+ concentrations ionic complexes with poly I and A2I are formed, which are characterized by the association constants K'I = 2000 M(-1) and K'A2I = 550 M(-1), respectively. The shape of the DUV spectra prompts the conclusion that these complexes are formed due to the inner-sphere interaction of Ni2+ ions with N7 of poly I and A2I presumably due to the outer-sphere Ni2+-O6 interaction. The formation of the complexes leads to destruction of A2I triplexes. The dependences of the melting temperature (T(m)) of A2I on Mg2+ and Ni2+ concentrations have been measured. The thermal stability is observed to increase at the ionic contents up to 0.01 M Mg2+ and only to 2x10(-4) M Ni2+. At higher contents of Ni2+ ions, T(m) lowers and the cooperativity of A2I melting decreases continuously. In all the cases the melting process is the A2I-->A+I+I (3-->1) transition. According to the "ligand" theory, these effects are generated by the energy-advantageous Ni2+ binding to single-stranded poly I (K'A2I < K'I) and by the greater number of binding sites which appears during the 3-->1 transition and is entropy-advantageous.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号