首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo evidence for the involvement of phospholipase A and protein kinase in the signal transduction pathway for auxin-induced corn coleoptile elongation
Authors:Hanju Yi  Doonam Park  Youngsook Lee
Institution:Dept of Life Science. Pohang Univ. of Science and Technology, Hyojadong San 31, Pohang 790–784. Korea.
Abstract:Auxin-induced elongation of com coleoptiles is accompanied by cell wall acidification, which depends upon H+-pump activity. We tested the hypothesis that phospholipase A and a protein kinase are involved in the pathway of auxin signal transduction leading to H+ secretion, and elongation of corn coleoptiles. Initially, the pH of the bath solution at 50–100 μm from the surface of a coleoptile segment (pHo) ranged between 4.8 and 6.6 when measured with an H+-sensitive microelectrode. Twenty or 50 μM lysophosphatidylcholine, 50 μM linolenic acid or 50 μM arachidonic acid induced a decline in pHo by 0.3 to 2.1 units. The effect was blocked by 1 mM vanadate, suggesting that lysophosphatidylcholine or linolenic acid induced acidification of the apoplast by activating the H+-pump. Lysophosphatidylcholine and linolenic acid also accelerated the elongation rate of the coleoptiles. While linolenic acid and arachidonic acid, highly unsaturated fatty acids, promoted pHo decrease and coleoptile elongation, linoleic acid, oleic acid, and stearic acid, fatty acids with a lesser extent of unsaturation, had no such effects. The effects of lysophosphatidylcholine, linolenic acid, and arachidonic acid on H+ secretion were not additive to that of indoleacetic acid (IAA), suggesting that lysophospholipids, fatty acids and auxin use similar pathways for the activation of the H+-pump. The phospholipase A2 inhibitors, aristolochic acid and manoalide, inhibited the IAA-induced pHo decrease and coleoptile elongation. The general protein kinase inhibitors, H-7 or staurosporine, blocked the IAA- or lysophosphatidylcholine-induced decrease in pHo. H-7 also inhibited the coleoptile elongation induced by IAA or lysophosphatidylcholine. These results support the hypothesis that phospholipase A is activated by auxin, and that the products of the enzyme, lysophospholipids and fatty acids, induce acidification of the apoplast by activating the H+-pump through a mechanism involving a protein kinase, which in turn promotes com coleoptile elongation.
Keywords:Acid growth theory  apoplast pH  auxin  corn  elongation  phospholipase A  protein kinase  signal transduction              Zea mays
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号