首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of simulated nitrogen deposition on growth and photosynthesis of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings
Authors:Liao Yingchun  Fan Houbao  Li Yanyan  Liu Wenfei and Yuan Yinghong
Institution:Nanchang Institute of Technology, Nanchang 330099, China
Abstract:To study the impact of nitrogen deposition on 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in pots, the dissolved NH4NO3 was sprayed on the seedlings every 3 days for 1 year. The simulated elevated N depositions were equivalent to N0(0), N1(6 gN/(m2 a)), N2(12 gN/(m2 a)), N3(24 gN/(m2 a)) and N4(48 gN/(m2 a)). The results indicated that medium N treatments (N2, N3) enhanced growth significantly. The height, stem base diameter and per-seedling biomass of Chinese fir seedlings increased with N loads and decreased in the high N treatments. Compared to N0, the height and per-seedling biomass were highest in N2 treatment and increased by 10.77% and 12.35%, respectively. The stem base diameter was highest in N3 treatment and increased by 8.81% compared to N0. The net photosynthetic rate (Pn) in treatments N1, N2, N3, N4 increased by 1.20%, 9.28%, 24.23% and 4.30%, and the highest photosynthetic rate by 67.09%, 125.32%, 148.10% and 51.90%, respectively. The N1–N3 treatments, especially N2, stimulated light compensation point (LCP) of the seedlings significantly, but N4 exhibited inhibitive effect. Compared with LCP, light saturation point (LSP) showed weaker response to N loads, positive to N2, but negative to all other N treatments. Low-to-medium N treatments (N1, N2) enhanced Chl (a + b) by 2.19% and 37.15%, while medium-to-high N treatments (N3, N4) reduced Chl (a + b) by 7.95% and 15.56%, respectively. Water use efficiency (WUE) and stomatal conductance (C) decreased slightly with N loads.
Keywords:Nitrogen deposition  Chinese fir seedling  Growth  Photosynthesis
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《生态学报(英文版)》浏览原始摘要信息
点击此处可从《生态学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号