Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif |
| |
Authors: | Berzat Anastacia C Buss Janice E Chenette Emily J Weinbaum Carolyn A Shutes Adam Der Channing J Minden Audrey Cox Adrienne D |
| |
Affiliation: | Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599-7512, USA. |
| |
Abstract: | Wrch-1 is a Rho family GTPase that shares strong sequence and functional similarity with Cdc42. Like Cdc42, Wrch-1 can promote anchorage-independent growth transformation. We determined that activated Wrch-1 also promoted anchorage-dependent growth transformation of NIH 3T3 fibroblasts. Wrch-1 contains a distinct carboxyl-terminal extension not found in Cdc42, suggesting potential differences in subcellular location and function. Consistent with this, we found that Wrch-1 associated extensively with plasma membrane and endosomes, rather than with cytosol and perinuclear membranes like Cdc42. Like Cdc42, Wrch-1 terminates in a CAAX tetrapeptide (where C is cysteine, A is aliphatic amino acid, and X is any amino acid) motif (CCFV), suggesting that Wrch-1 may be prenylated similarly to Cdc42. Most surprisingly, unlike Cdc42, Wrch-1 did not incorporate isoprenoid moieties, and Wrch-1 membrane localization was not altered by inhibitors of protein prenylation. Instead, we showed that Wrch-1 is modified by the fatty acid palmitate, and pharmacologic inhibition of protein palmitoylation caused mislocalization of Wrch-1. Most interestingly, mutation of the second cysteine of the CCFV motif (CCFV > CSFV), but not the first, abrogated both Wrch-1 membrane localization and transformation. These results suggest that Wrch-1 membrane association, subcellular localization, and biological activity are mediated by a novel membrane-targeting mechanism distinct from that of Cdc42 and other isoprenylated Rho family GTPases. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|