首页 | 本学科首页   官方微博 | 高级检索  
     


Replacement of the distal glycine 139 transforms human heme oxygenase-1 into a peroxidase
Authors:Liu Y  Koenigs Lightning L  Huang H  Moënne-Loccoz P  Schuller D J  Poulos T L  Loehr T M  Ortiz de Montellano P R
Affiliation:Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA.
Abstract:The human heme oxygenase-1 crystal structure suggests that Gly-139 and Gly-143 interact directly with iron-bound ligands. We have mutated Gly-139 to an alanine, leucine, phenylalanine, tryptophan, histidine, or aspartate, and Gly-143 to a leucine, lysine, histidine, or aspartate. All of these mutants bind heme, but absorption and resonance Raman spectroscopy indicate that the water coordinated to the iron atom is lost in several of the Gly-139 mutants, giving rise to mixtures of hexacoordinate and pentacoordinate ligation states. The active site perturbation is greatest when large amino acid side chains are introduced. Of the Gly-139 mutants investigated, only G139A catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, but most of them exhibit a new H(2)O(2)-dependent guaiacol peroxidation activity. The Gly-143 mutants, all of which have lost the water ligand, have no heme oxygenase or peroxidase activity. The results establish the importance of Gly-139 and Gly-143 in maintaining the appropriate environment for the heme oxygenase reaction and show that Gly-139 mutations disrupt this environment, probably by displacing the distal helix, converting heme oxygenase into a peroxidase. The principal role of the heme oxygenase active site may be to suppress the ferryl species formation responsible for peroxidase activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号