首页 | 本学科首页   官方微博 | 高级检索  
     


P2X7 Receptor Stimulation of Membrane Internalization in a Thyrocyte Cell Line
Authors:M.?Y.?Kochukov,A.?K.?Ritchie  author-information"  >  author-information__contact u-icon-before"  >  mailto:aritchie@utmb.edu"   title="  aritchie@utmb.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
Abstract:Using fluorescent membrane markers, we have previously shown that extracellular ATP stimulates both exocytosis and membrane internalization in the Fisher rat thyroid cell line FRTL. In this study, we examine the actions of ATP using whole-cell recording conditions that favor stimulation of membrane internalization. ATP stimulation of the P2X7 receptor activated a reversible, Ca2+-permeable, cation conductance that slowly increased in size without changes in ion selectivity. ATP also induced a delayed irreversible decrease in cell capacitance (Cm) that was equivalent to an 8% decrease in membrane surface area. Addition of guanosine 5′-0-2-thiodiphosphate to the pipette solution inhibited the ATP-induced decrease in Cm without affecting channel activation. The effects of ATP on membrane conductance were mimicked by 2′,3′-O-(4-benzoylbenzoyl)-ATP, but not by UTP, adenosine, or 2-methylthio-ATP, and were inhibited by pyridoxal phosphate-6-azophenyl-2′4′-disulfonic acid, adenosine 5′-triphosphate-2′3′-dialdehyde, and Cu2+. The capacitance decrease persisted in Na+-, Ca2+- and Cl-free external saline or with Ca2+-free pipette solution. It is concluded that ATP activation of the inotropic P2X7 receptor stimulates membrane internalization by a mechanism that involves intracellular GTP, but does not require internal Ca2+ or influx of Na+ or Ca2+ through the receptor-gated channel.
Keywords:P2X7 receptor  ATP  Endocytosis  Thyroid  Patch clamp
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号