首页 | 本学科首页   官方微博 | 高级检索  
     


Traversing the ovine cervix - a challenge for cryopreserved semen and creative science
Authors:Robinson J J  McKelvey W A C  King M E  Mitchell S E  Mylne M J A  McEvoy T G  Dingwall W S  Williams L M
Affiliation:Animal Biology Division, Scottish Agricultural College, Craibstone Estate, Bucksburn, Aberdeen, UK. john.robinson@sac.ac.uk
Abstract:This review brings together research findings on cervical relaxation in the ewe and its pharmacological stimulation for enhancement of the penetration needed for transcervical insemination and embryo transfer. On the basis that the success of artificial insemination is the percentage of ewes lambing, a review is made of recent research aimed at understanding and minimising the sub-lethal effects of freezing and thawing on the viability of spermatozoa, their membrane integrity and their ability to migrate through cervical mucus, as these characteristics have a major influence on fertility, particularly when semen is deposited, artificially, in the os cervix. Milestones of achievement are given for transcervical intrauterine insemination, embryo recovery and transfer and the birth of lambs of pre-determined sex, firstly following intracytoplasmic sperm injection, then laparoscopic intrauterine insemination using highly diluted flow-cytometrically sorted fresh semen and subsequently by os cervix insemination using sexed semen that had been frozen and thawed. Diversity of research endeavour (applied, cellular, molecular), research discipline (anatomy, histology, immunology, endocrinology) and research focus (cell, tissue, organ, whole animal) is embraced within the review as each has significant contributions to make in advancing recent scientific findings from the laboratory into robust on-farm transcervical insemination and embryo transfer techniques.
Keywords:ovine cervix  semen cryopreservation  artificial insemination  embryo recovery and transfer
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号