首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of pH and ascorbate on benzylglucosinolate degradation in seed extracts of Lepidium sativum
Authors:Xenophon Hasapis  Alexander J. MacLeod
Affiliation:Department of Chemistry, Queen Elizabeth College, University of London, Campden Hill Road, London W8 7AH, U.K.
Abstract:The effects of pH on the enzymic degradation of benzylglucosinolate in Lepidium sativum seed autolysates were investigated both with and without addition of the enzyme co-factor ascorbic acid. Benzyl cyanide, isothiocyanate, thiocyanate and alcohol were identified in autolysates, although only traces of the alcohol were obtained. The nitrile was always the major product (80% of total glucosinolate products) even at pH 8 and 9 when the usually accepted, proton-dependent mechanism of nitrile production cannot be operative. Thiocyanate was always the second most abundant product. In the absence of added ascorbate, isothiocyanate production decreased with increasing pH, again contrary to accepted theory. L. sativum seeds thus constitute an inherently nitrile-producing system which exhibits ‘anomalous’ glucosinolate degradation. In the absence of added ascorbate, thiocyanate was the only product which was formed in approximately constant amounts, whatever the pH, so its mechanism of production is not necessarily pH-dependent. The presence of added ascorbate in general promoted enzyme activity and showed a maximum effect at ca pH 5, although minimum isothiocyanate formation was observed at that pH. At pH 4 and below, there was less glucosinolate degradation in the presence of added ascorbate than in its absence, and the conclusion is reached that at relatively high acidities the enzyme co-factor behaves as an inhibitor.
Keywords:Cruciferae  cress seeds  autolysis  glucosinolate degradation  pH  ascorbate.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号