首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The 2',3'-cAMP-adenosine pathway
Authors:Jackson Edwin K
Institution:Dept. of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Pittsburgh, PA 15219, USA. edj@pitt.edu.
Abstract:Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2',3'-cAMP, a positional isomer of the second messenger 3',5'-cAMP. To our knowledge, this represents the first detection of 2',3'-cAMP in any cell/tissue/organ/organism. Nuclear magnetic resonance experiments with isolated RNases and experiments in isolated, perfused kidneys suggest that 2',3'-cAMP likely arises from RNase-mediated transphosphorylation of mRNA. Both in vitro and in vivo kidney experiments demonstrate that extracellular 2',3'-cAMP is efficiently metabolized to 2'-AMP and 3'-AMP, both of which can be further metabolized to adenosine. This sequence of reactions is called the 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP/3'-AMP → adenosine). Experiments in rat and mouse kidneys show that metabolic poisons increase extracellular levels of 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine; however, little is known regarding the pharmacology of 2',3'-cAMP, 2'-AMP, and 3'-AMP. What is known is that 2',3'-cAMP facilitates activation of mitochondrial permeability transition pores, a process that can lead to apoptosis and necrosis, and inhibits proliferation of vascular smooth muscle cells and glomerular mesangial cells. In summary, there is mounting evidence that at least some types of cellular injury, by triggering mRNA degradation, engage the 2',3'-cAMP-adenosine pathway, and therefore this pathway should be added to the list of biochemical pathways that produce adenosine. Although speculative, it is possible that the 2',3'-cAMP-adenosine pathway may protect against some forms of acute organ injury, for example acute kidney injury, by both removing an intracellular toxin (2',3'-cAMP) and increasing an extracellular renoprotectant (adenosine).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号